Peptides of Matrix Gla Protein Inhibit Nucleation and Growth of Hydroxyapatite and Calcium Oxalate Monohydrate Crystals

نویسندگان

  • Maria Goiko
  • Joshua Dierolf
  • Jared S. Gleberzon
  • Yinyin Liao
  • Bernd Grohe
  • Harvey A. Goldberg
  • John R. de Bruyn
  • Graeme K. Hunter
چکیده

Matrix Gla protein (MGP) is a phosphorylated and γ-carboxylated protein that has been shown to prevent the deposition of hydroxyapatite crystals in the walls of blood vessels. MGP is also expressed in kidney and may inhibit the formation of kidney stones, which mainly consist of another crystalline phase, calcium oxalate monohydrate. To determine the mechanism by which MGP prevents soft-tissue calcification, we have synthesized peptides corresponding to the phosphorylated and γ-carboxylated sequences of human MGP in both post-translationally modified and non-modified forms. The effects of these peptides on hydroxyapatite formation and calcium oxalate crystallization were quantified using dynamic light scattering and scanning electron microscopy, respectively. Peptides YGlapS (MGP1-14: YγEpSHEpSMEpSYELNP), YEpS (YEpSHEpSMEpSYELNP), YGlaS (YγESHESMESYELNP) and SK-Gla (MGP43-56: SKPVHγELNRγEACDD) inhibited formation of hydroxyapatite in order of potency YGlapS > YEpS > YGlaS > SK-Gla. The effects of YGlapS, YEpS and YGlaS on hydroxyapatite formation were on both crystal nucleation and growth; the effect of SK-Gla was on nucleation. YGlapS and YEpS significantly inhibited the growth of calcium oxalate monohydrate crystals, while simultaneously promoting the formation of calcium oxalate dihydrate. The effects of these phosphopeptides on calcium oxalate monohydrate formation were on growth of crystals rather than nucleation. We have shown that the use of dynamic light scattering allows inhibitors of hydroxyapatite nucleation and growth to be distinguished. We have also demonstrated for the first time that MGP peptides inhibit the formation of calcium oxalate monohydrate. Based on the latter finding, we propose that MGP function not only to prevent blood-vessel calcification but also to inhibit stone formation in kidney.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epitaxial relationships in urolithiasis: the calcium oxalate monohydrate-hydroxyapatite system.

Chemical kinetic data, complemented with scanning electron-microscope observations of the crystalline phase, show that seed crystals of hydroxyapatite have the ability to induce the growth of calcium oxalate monohydrate crystals epitaxially from a metastable supersaturated solution of calcium oxalate. The rate of growth of calcium oxalate crystals is dependent on the surface area of the seed ma...

متن کامل

Role of the organic matter in calcium oxalate lithiasis.

Urine contains variable amounts of organic matter derived from cell degradation. The cellular detritus is composed by membranous and cytosolic glycoproteins, etc. The aim of this paper was to study the role of organic matter in calcium oxalate crystal development and to evaluate the action of some crystallization inhibitors on this process. Crystallization studies were carried out on urine in s...

متن کامل

Epitaxial relationships in urolithiasis: the brushite-whewellite system.

1. Whewellite (calcium oxalate monohydrate) crystals were found to induce epitaxially the heterogeneous nucleation of brushite (calcium monohydrogen phosphate dihydrate) from its metastable supersaturated solution in approximately one-quarter of the time required for spontaneous precipitation in the absence of added nucleating agents. Scanning electron-microscope observation of the crystalline ...

متن کامل

Phosphorylation of osteopontin peptides mediates adsorption to and incorporation into calcium oxalate crystals.

Phosphorylated peptides of osteopontin (OPN) have been shown to inhibit the growth of the {100} face of calcium oxalate monohydrate (COM). The inhibitory potency has been shown to be dependent on the phosphate content of the peptide. The purpose of this study is to better understand the means by which phosphate groups promote crystal growth inhibition by OPN peptides. Peptides of rat bone OPN 2...

متن کامل

Antioxidant Properties of Polysaccharide from the Brown Seaweed Sargassum graminifolium (Turn.), and Its Effects on Calcium Oxalate Crystallization

We investigated the effects of polysaccharides from the brown seaweed Sargassum graminifolium (Turn.) (SGP) on calcium oxalate crystallization, and determined its antioxidant activities. To examine the effects of SGP on calcium oxalate crystallization, we monitored nucleation and aggregation of calcium oxalate monohydrate crystals, using trisodium citrate as a positive control. We assessed anti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013